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To the Editor: 
In discussing linear mammillary models, Benet (1) used 

Laplace transform methods to solve the differential 
equations describing the compartmental exchanges of 
drug. Several investigators (2-5) described this method 
and gave it broader application and understanding relative 
to this type of pharmacokinetic modeling. However, none 
of these authors indicated a mathematical correction in the 
use of the Laplace transform to derive Eqs. 12 and 23 (1). 
In this article, we attempt to identify previous mathe- 
matical oversights and to offer a corrected derivation of 
the equations describing this model. 

Equation 12 (1) :  

a,,] = 
k"(s + E ~ ) ( s  + E 3 ) ( l  - e - b s )  

(Eq. 1 )  

is the Laplace transform for the amount of drug in the 
central compartment, Compartment 1, in a three-com- 
partment model for an intravenous infusion over the time 
interval 0 I t I b. The given equation is correct but, in 
determining the inverse Laplace transform of us, 1, the 
numerator k o ( s  + E ~ ( s  + E3)(1 - e - b s )  has been misin- 
terpreted as a polynomial in the variable s and, therefore, 
the General Partial Fraction Theorem has been misap- 
plied. The presence of the factor (1 - e - b s )  destroys the 
polynomial character of the numerator, so neither the 
General Partial Fraction Theorem nor the Heaviside ex- 
pansion immediately pertains (6). 

S ( S  + CU)(s + P)(s + y )  

The following modifications should be made: 

S ( S  + U ) ( S  t B ) ( s  + y )  s(s + u)(s + P ) C S  + y )  
k"(s + E ~ ) ( s  + E3) - ko(s  + E z ) ( s  + E3) e - b s  

a,,]  = 

(Eq. 2 )  

The first term in this difference is the quotient of two 
polynomials, so the Heaviside expansion applies as fol- 
lows: 

k"(s + E ~ ) ( s  t 152) - ko(E2)(E3) 

k"(Ez - - 01) e -^L 
- 4 3  - N ) ( Y  - a )  

L - l  Ids + N ) ( S  + P ) ( S  + ,)I - CUPy 

+ 

To compute the inverse Laplace transform of the second 
term, a shift theorem should be used. Let H ( t  - b )  be a 
function defined by the expression 

(Eq. 4) 

This function is usually called the unit-step function or 

the Heaviside function (7). With H ( t  - b) ,  the needed shift 
theorem is easily stated. Let b > 0 and let the Laplace 
transforms of F ( t ) ,  t [ F ( t ) l ,  exist. Then: 

LIF(t - b ) H ( t  - b)l = e-bsL(F( t ) l  (Eq. 5 )  

By applying this theorem under the assumption that: 

it is found that: 

(Eq. 6)  

in the time interval t > b. This solution coincides exactly 
with that of Benet (1) for t > b and gives a more explicit 
solution for0 I t I b. It is a fact that if the constant b is 
allowed to vary while infusion continues, i.e., b = t in Ref. 
1, one can simplify Benet's solution to the one proposed. 
However, changing constants to variables in the middle of 
a derivation confuses the reader and the simplification 
requires very tedious calculations. The proposed approach 
is more direct and leaves b as a fixed constant in the 
model. 

With Eq. 23 (1): 

(Eq. 10) 

Benet wished to demonstrate how to handle a partial 
fraction decomposition in which the denominator has a 
repeated root. However, the numerator is misread as a 
polynomial in s. The term as,3 may be written as fol- 
lows: 

Then, by using the expansion described by Benet in the 
Appendix (1) and the shift theorem quoted above, the 
following expression is obtained from Eq. 11: 
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for 0 I t 5 b and: 

for t > b.  Equation 13 coincides with Eq. 24 (l), which is 
valid for the model only after infusion has ceased. Equation 
12 gives a very explicit form of the solution during the 
infusion time. 

I t  is hoped that the corrections made in this article can 
contribute to the broader application and understanding 
of the method proposed by Benet. 
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To the Editor: 
The impetus for preparing my 1972 paper on the general 

treatment of linear mammillary models as used in phar- 
macokinetics (1) was a sense of frustration with the pages 
of mathematical derivation included as part of each 
pharmacokinetic paper that appeared in print up to that 
time. As I stated in the introduction (1): “This paper in- 
tends to present some very simplified general treatments 
which will allow workers to derive equations for any linear 
mammillary compartment model with any first- or zero- 
order input process.” I believed then, as I believe now, that 
pharmacokinetic Compartment models are useful only as 
a convenient means to describe and predict the time course 

of measurable body fluid compartments such as plasma, 
blood, and urine following single and multiple doses. I did 
not consider the possibility of input into a peripheral 
compartment or the general derivation for such a treat- 
ment, as was described by Vaughan and Trainor (21, since 
I believe this use of compartment models is inappropriate, 
i.e., defining one compartment in the model as specifically 
describing an organ in the body such as the liver. Such a 
combination of compartment and perfusion models re- 
quires exponential terms that are not needed to fit the 
minimal compartment model adequately and leads to 
difficulties in interpreting “absorption” rate constants for 
such a system. 

Haborak et al. (3) questioned the solution of two equa- 
tions in my earlier paper, stating: “The presence of the 
factor (1 - e-bs)  destroys the polynomial character of the 
numerator, so neither the General Partial Fraction The- 
orem nor the Heaviside expansion immediately pertains.“ 
They are correct. However, the correct solution is also 
obtained using the one-step method that I proposed (1,4). 
Apparently, the restriction concerning the polynomial 
character of the numerator may be relaxed when expo- 
nential functions appear in the numerator due to the in- 
clusion of a zero-order input function. Since I am no 
mathematician, I shall leave the proof of this exception to 
others. However, I have tested the one-step method and 
found that it gives the correct equations for the usual 
multicompartment pharmacokinetic models with zero- 
order input into the central or peripheral compart- 
ments. 

The authors of the preceding article (3) were most dis- 
turbed by the fact that I proposed the use of a single 
equation to describe the time course of drug in the central 
compartment during infusion and when infusion has 
ceased. Although I did explain, following Eq. 13 (11, that 
this approach was equivalent to using two independent 
variables, t = clock time and b = infusion time, Haborak 
et al. (3) stated that “changing constants to variables in 
the middle of a derivation confuses the reader. . ..” I must 
admit that this point has led to questions by a number of 
readers over the years. Perhaps the preceding note and this 
reply will help readers to understand the appropriate use 
of Eqs. 13 and 24 in the 1972 paper (1). 

Haborak et al. (3) also stated that my use of a single 
equation “requires very tedious calculations.’’ This 
statement I do not understand; it certainly would be 
quicker to calculate A 1 values in Eq. 13 on any program- 
mable calculator using a single equation with two inputs 
during the infusion phase than it would be using two dif- 
ferent equations. But “calculation” is not the important 
functional use for Eq. 13. In 1972, I was concerned that 
investigators were fitting data from the postinfusion phase 
separately from the infusion phase. This procedure is in- 
appropriate, as I stated previously (1). In 1972, many of the 
computer programs used to fit pharmacokinetic data, 
particularly the BMD series (5), only allowed the investi- 
gator to fit one function a t  a time. However, I stated then 
(1) that: “All the least-squares nonlinear fitting programs 
usually utilized in pharmacokinetic treatments have the 
ability to fit data to Eq. 13. . . .” 

In conclusion, the previous article (3) points out the 
detailed solution for the Laplace derivation when an ex- 
ponential operator term appears in the numerator of the 
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